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Integrable Classical Systems in Higher Dimensions 

S. C. Mishra 1'2 and D.  Parashar 1'3 

Received June 13, 1989 

A general method for the construction of the second constant of motion (up to 
second order) for higher-dimensional classical systems is carried out. Corre- 
spondingly, the first- and the second-order potential equations are obtained 
whose solutions can directly provide the integrable systems. 

1. I N T R O D U C T I O N  

In recent years, there has been considerable interest in the study of 
t ime-dependent  (Giinther and Leach, 1977; Leach, 1981; Mishra et al., 1984; 
Kaushal  et al., 1984; Mishra, 1985) and t ime-independent  (Hall, 1983; Holt, 
1982; Kaushal  et al., 1985; Kaushal and Mishra, 1986) integrable classical 
dynamical  systems in one and two dimensions. Construction of  invariants 
for such systems facilitates the solution of nonlinear differential equations. 
There exists at present no general method for testing the integrability of  a 
given dynamical  system. However,  the Painlev6 method (Dorizzi et al., 
1983) detects the integrability of  a dynamical system with the use of  singular- 
ity.analysis and direct calculation of the second integral of  motion. Whittaker 
(1927) first investigated the problem of the construction of an invariant 
other than the total energy, which goes by the name of the second constant 
of  motion. His studies were, however, restricted to the invariant of  first or 
second order in momenta.  Although there have been several attempts 
(Gfinther and Leach, 1977; Leach, 1981; Mishra et al., 1984; Kaushal  et 
al., 1984; Mishra, 1985; Hall, 1983; Holt, 1982; Kaushal et aL, 1985; Kaushal  
and Mishra, 1986; Dorizzi  et al., 1985; Whittaker, 1927; Fokas and Lager- 
strom, 1980; Inozemtsev, 1983) in recent years to construct the second- and 
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higher-order invariants in two dimensions, not much effort has been made 
to obtain the invariants to (higher) three dimensions. Grammaticos et al. 
(1985) discussed a method of  constructing N-dimensional integrable sys- 
tems starting from the two-dimensional ones. They further carried out the 
singularity analysis of  the equations of  motion, which led them to systems 
exhibiting the Painlev6 property, i.e., the only movable singularities of  the 
solutions in the complex time plane were assumed to be pole type. These 
results are also discussed for different cases of  N-dimensional systems by 
Lakshmanan and Sahadevan (1984). In some cases, no doubt, the system 
is found to be integrable just by accident. 

Dorizzi et al. (1986) investigated the existence of  integrable systems in 
three dimensions in which they reduced three-dimensional systems to two- 
dimensional ones using cylindrical symmetry and solved for quartic poten- 
tials. Our method is quite different from that of  Dorizzi et al. (1986). In 
this investigation, we present a recipe for the construction of  certain poten- 
tials and corresponding invariants of  a particular type for three-dimensional 
t ime-independent classical systems. A general mathematical formulation is 
described in Section 2. In Section 3, we show, in addition to other examples, 
that a well-known potential (Fokas and Lagerstrom, 1980; Inozemtsev, 
1983) of  the type (x~x2) -2/3 (which admits' a third-order invariant in two 
dimensions) admits a second-order invariant in three dimensions. In par- 
ticular, our method is general and we construct the invariants without the 
need for reducing the dimensions. Section 4 contains concluding remarks. 

2. THE M E T H O D  

We consider a dynamical system described by the Lagrangian 

L = �89  ~ +  ~3 2) - V(x , ,  x2, x3) (1) 

with the concomitant equations of  motion 

aV OV e~V 
5/1 = - - -  ~ = - - -  ~3 = - ~ (2) 

OX 1 ' O X  2 ' OX3 

Let us assume the existence of  the second constant of  motion (called 
invariant hereaf te r ) / ,  up to second order in momenta in a general form as 

1 
I = ao+ a/~i + ~  ao~i ~ (3) 

where 

i , j -  1, 2, 3, ~:, = x, ,  ~:2 = ~2, ~3=~3 (4) 
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and the coefficients ao, ai, and a o are functions of Xl, X2, and x3 only. 
These coefficients are symmetric with respect to only interchange of their 
indices. Here we also assume that the invariant contains either only even 
powers of momenta or only odd powers of momenta (Hall, 1983; Holt, 
1982; Kaushal et  al., 1985; Kaushal and Mishra, 1986; Hietarinta, 1987). 
The invariance of I implies d I / d t  = 0, and using (3), we get 

d I  
ai,~i +saO.k~,~jk  +~aij(,~,~ + ~i~) (5) =0=ao.i~,+aij~i~+ " 1 1 �9 �9 

After accounting for the proper symmetrization of the coefficients and noting 
that (5) must hold identically in ~'s, we obtain the following relations: 

flU, k § ajk, i § aki J ~- 0 

ai , j  § aj, i = O 

ao, i + aij~j = 0 

a i~  i = 0 

Equations (7) and (9) after using (4) 
differential equations: 

(6) 

(7) 

(8) 

(9) 

yield the following set of partial 

Oal 
=0  (lO) 

ax~ 

Oa2 
=0  (11) 

ax2 

aa3 
=0 (12) 

ax3 

Oal FOa2 =0 (13) 
OX 2 ax 1 

Oa---!+ Oa--2 = 0 (14) 
aX 3 ax I 

aa2+aa3=O (15) 
Ox3 Ox2 

al-~l + a2x2+ a3;~3 = 0 (16) 

whereas equations (6) and (8) yield 

a a l l  - 0  
ax1 

(17) 



302 Mishra and Parashar 

Oal' +20a12 = 0 (18) 
OX2 OX 1 

Oau + 2 Oa'3 = O (19) 
OX 3 OX 1 

0a2----~2 + 20a,2 = 0 (20) 
axl Ox2 

Oal2 ~_:a23+Oa130 =0  (21) 
Ox3 Ox, Ox2 

0_.33 + 2 a  Oa13 = 0 (22) 
OX 1 OX 3 

0a22 
= 0 (23) 

ax2 

0a2__.~2 + 2 0'1123 = 0 (24) 
OX 3 ON2 

0a33 0a23 
~ + 2  =0  (25) 
Ox2 Ox3 

0a33 

Ox3 

Oao 

=0  (26) 

OV OV OV 
Ox, = a,, - - +  a,2 . . . .  (27) OXl OX 2 + a13 Ox 3 

Oao OV OV OV 
- a,2 ~x+ a22 Ox---~2+ a23 Ox3 (28) Ox2 

Oao OV OV OV 
. . . . . . . .  (29) 

OX3 a13 Oxl + a23 Ox 2 + a33 OX3 

Now we present the solutions of these equations for determining various 
coefficients. From equations (10)-(12) we can write 

a, =f,(x2, x3), a2 =f2(x,,  x3), a3 -----f3(x1, X2) 

To solve equations (13) and (15), we differentiate them wrt x3 and Xl, 
respectively, and obtain 

0 (Oal Oa3) 
Ox2 \Ox3 ~ x , / = 0  (30) 
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Using (14), this equation leads to 

a lm. g l  (X2) --t- g2(x3) (31) 

Similarly, a2 and a3 can be obtained in the form 

a2 = g3(x3) + g4(x,) (32) 

a 3 = g'5(Xl) + g6(x2)  ( 3 3 )  

where gi and gi are arbitrary functions of their corresponding arguments. 
In order to determine them, we use (31) and (32) in (13) to get 

dgl(x2) dg4(xl) 
- - = c o n s t  (say Ca) (34) 

dx2 dxl 

which implies that 

gl = Clx2 + C2 (35) 

g4 = - C 1 x l  "+" C3 (36) 

where C~ is the separation constant and C2, C3 are integration constants. 
Similarly, we can find the values of g2, gJ, gs, and g6 as 

g2 = - C 4 x 3 +  C6 (37) 

g3 -~" C7x3 + C8 (38) 

g5 -~" CaX1 -~- C5 (39) 

g6 ~--" -- C7x2 "[- C9 (40 )  

where Ca, C7 are the separation constants and C5, C6, C8, and C9 are the 
integration constants. 

Substituting these values of ~ ,  g2, g3, g4, gs, and g6 into equations 
(31)-(33) we get 

al = C, x 2 -  C4x 3 + Ct2 (41) 

(! 2 ---~ CvX 3 -- CIX 1 + C~ (42) 

a3 = C4x~ - C7x2+ C'5 (43) 

where ' - C 2 - C z + C 6 ,  C3 C3+C8, and ' -  ' = C 5  - Cs  + C9. 
Again using equation (16) along with equation (2), we arrive at the 

"potential equation," 

( f i x  2 - C423.-[- Ct2) O V.-t-( C7x 3 - ClXl... ~- Ct3) 
O___V 

Ox~ Ox2 

+ (C4x,  - C7x2+ C'5) OV= 0 (44) 
Ox3 
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The solution of this equation will provide directly the first-order invariants 
for three-dimensional systems. Now we solve equations (i7)-(29). Equations 
(17), (23), and (26) clearly imply that 

al l  = al l(X2, x3) 

a22 = a22(xl ,  x3) 

a33 = aaa(Xl, x2) 

(45) 

(46) 

(47) 

Using these results, equations (18) and (20) will yield two expressions for 
a12 respectively as 

and 

at2 = h i (x2 ,  x3)x~ + h2(x2, x3) (48) 

a12 = ha(x1, x3)x2 + h , ( x l ,  x3) (49) 

where hi are arbitrary functions of their arguments. In order for these two 
expressions for a~2 to be the same, one has to take recourse to certain 
plausible choices on the functions hi which evidently are constrained by 
the functional forms of  their arguments. These considerations restrict the 
possible choice of  the hi to the following identifications: 

hi = $3x2-~ a, h 2 = o t x 2 + K  
(50) 

h 3 = S 3 x  I -~- ol, h4 = a x l  + K 

where $3 is a dimensionless constant and a and K are introduced to account 
for the dimensional consistency of the equations. With these prescriptions, 
the resulting expression for a12 has the form 

a12 = Sax1x2~- O{(XI "1- X2) "~- K (51) 

which contains, in addition, a linear term proportional to a. 
Proceeding exactly similarly, we can write down expressions for a~a 

and a23 as follows: 

a~3 = S 2 x 1 x 3  ~ o/(Xl dr x3) '1- K (52) 

a2a = Slx2x3 + a (x2 + x3) + K (53) 

Substitution of  equation (51) in (18) and (19) immediately gives 

all  = - S a x  2 - $2x23 - 2or (xz + x3) + const (54) 

Similar expressions for a22 and a33 can be obtained by substituting equation 
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(52) in (20) and (24), and equation (52) in (22) and (25). Thus, we have 

a22 = -S3x~ - Six 2 - 2a (xl + x3) + const (55) 

a33 = -S2 X2 - Six 2 - 2or (Xl + x2) + const (56) 

On eliminating ao from equations (27) and (28), we get 

OV(OaH aa~2)+ a2V 
OXl \-~x 2 Oxl ] OXlOX2 (all - az2) 

OV (Oa~2 aa22~ {02V 02V '~  
+ - -  - -  _ _  + a 1 2  

OV (Oal3 aa23~ ( O2V 02V ~ 
+ - -  + - - -  a23 = 0 (57) OX3 \-O--X2 ~ / a13 Ox2Ox3 OXlOX3/ 

Substituting the values of  aal, a22, a33, a12, a13, and a23 in (57), we get the 
potential equation 

3 [(S3x,+ot  ) OV (S3x2_~_ 01~)OV] 

02V 
-~ [ S 3 ( x  2 -- X 2) "Jv x 2 ( S 1  - S2) -~- 2 ~  (x  1 - x2) ] OXlOX2 

+[S3Xl~+~(x,+x~)+K]( o~v ~ \ox~ 7~1 +[s2~,x3+~(x, + x3)+ K] 

( ~ ) ( 02---- -~V~-[SlX2X3+a(x2+x3)+K]~ = 0  (58) 
X \ O X 2 O X 3 /  

Similarly, using equations (28) and (29, (27) and (29), and substituting all ,  
a22, a33, a12, a13, and a23, we get the following potential equations: 

"31- [ S l ( X  2 "]- X 2) + X21($2 --  S3) "~- 2a (x2 - x3)]  

x ax~x3 ~ +[S,x~x3+~(x2+x3)+K] 7x~} 

+ [S3xlx2 + a(x~ + x2) + K] 

O2 V 02 V 
X --[S2XIX3-t-Ot(XI+X3)-PK] . . . . . .  0 (59) 

ax~ox3 axlox 2 
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3[(S2x,+a) OV-(s2x3+a ) O---V]+[S2(x~-x2)+x~(S,-S3) 
Ox3 Ox~ _1 

O2V 
+2a(xl_x2)] O~lO%+[S3x,x2+a(xl+x2)+ K ] 02V 

Ox2Ox3 
[02V 02V'~ 

+[S2x1x3-b~ x3)-t-K]~~x~ ?2] 

02V 
- [S~XzX3 + a(x2 + x~) + K] Ox~Ox2 = 0 (60) 

In principle, the solutions of these equations [(58)-(60)] will directly provide 
the systems admitting second-order invariants. However, the solutions of 
these equations, in general, are rather involved. In the following section, 
we solve these potential equations for some specific forms of V. 

3, ILLUSTRATIVE EXAMPLES 

1. The potential V is separable in xj and has the form 

V(x,, x2, x3) = x~' + x;' + x~ (61) 

Substituting this form of V in the potential equations (58)-(60), we find 
that all these equations provide a solution 

a = K = 0 and m, n, l = - 2  (62) 

Thus, the potential becomes 

1 1 1 V(Xl, x2, x3) ~--_--~-1----~.2-~-~ (63) 
X1 X2 X3 

Using (63) in equations (27)-(29) and demanding the compatibility of the 
solutions, we find 

ao.~--[1(S3x2-~ S2x2)-I-1(S3x2-.l-SlX2)-~33 (S2x2-]-SlX2)] (64) 
LXl X2 

and the invariant (3) corresponding to the potential (63) now becomes 

I = -l[S3(Yc, x 2 - x~2)2+ S:(Yqx3 - xix3) 2-t- Sl (X2X 3 -- X2X3) 2] 

._ [~212 (S322 t_ S2X2 ) +x_.~2(S3x,+SlX3)+x._~ 3 1 .  2 2 I(S2x2+S,x~) ] (65) 
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2. Let V be separable in x, having the form 

V ( x l ,  x2, x~) = x l  x~x3 " " i (66) 

Now substituting (66) in the potential equations (58)-(60), we find 

o~ = K = 0, $1 = $2 = $3 = S (67) 

and 

rn + n + t = - 2  (68) 

Using (67), equations (51)-(56) become 

al ,  = - S ( x 2 + x 2 ) ,  a22 = - S ( x 2 + x ~ ) ,  a33 = - S ( x 2 ~ + x ~ )  

a ~  = Sx~x2, a13 ~ S x j x 3 ,  a23 = Sx2x3 

In fact, condition (68) yields a large class of potentials. However, we see 
that a unique solution is indeed possible from the expressions of a o which 
are found after using (66) in (27)-(29), 

z 2 ~ . t S ~ + 2 .  t" I ) + K I ( x 2 ,  x3) 120=--S(x2"-I'-X3)X 1 XeX3-~--m.~_-------~ x 1 x2x3 (n+ 

S rn n + 2  [ 2 2 m . ~ + - - x l x 2  ao = - S ( x l + x 3 ) x l  x2x3 n + 2  x3(m + l) + g2(x l  , x3) (69) 

2 2" m ~ 1 S m n 1+2"  
a o = - S ( x l +  x2)x I xzx3+l+-----~ x I x2x  3 ( m + l l ) +  K3(Xl,X3) 

where Kt ,  K2, / (3  are arbitrary functions of their arguments. 
In this case we obtain three different expressions for ao which limit 

the freedom to a unique choice, i.e., K~ - / ( 2  = K3 = 0 and m = n = I = -2 /3 ,  
which also agrees with equation (68). Finally, the expression for ao becomes 

a o  = - S(x~ + x~ + x~)(xl x2x~)-2" (70) 
and the ifivariant (3) corresponding to the potential (x~x2x3) -2/3 becomes 

I = - s { ~ [ ( ~ x ~ -  x1~2) ~ + (~lX~ - x ~ 3 ) :  

"~- (J~2X3 - -  X 2 X 3 )  2 ]  "~ (X21 "4- X 2 + X2)(XIX2X3) - -2 /3}  ( 7 1 )  

3. Let the potential be in the spherically symmetric form, viz,, 

V ~ . ~  " 2 2 2 /3(xl + x2+ x3), /~ = const (72) 

The expression for a0 is obtained after substituting (72) in equations (27)- 
(29) and using equations (51)-(56). The result is 

ao = ~ f l K  (x lx2  + x2xa + x lx3)  (73) 
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The invariant (3) corresponding to the potential (72) is explicitly given by 

I = 4 ~ g  ( X l X  2 --~ x 2 x  3 -~ X l X 3 )  

�9 1 2 . 2  2 . 2  
-~- S 1 [ x 2 x 3 x 2 x  3 - ~ ( x 3 x  2 --~ x 2 x 3 ) ]  

�9 �9 1 2 . 2  2 . 2  
-.t- S 2 [ X l X 3 X l X  3 - g ( X l X  3 -t- x 3 x  I ) ]  

�9 �9 I 2 , 2  2 . 2  
--~ S 3 [ X l X 2 X l X  2 - ~ ( X l X  2 --~ X 2 X l )  ] 

+ K (2122 + 2223 + 2123) (74) 

4. Let the potential be given by 

2 2 - 2  
V : x I --~ x 2 ---1- x 3 (75) 

Proceeding exactly as in the previous cases, the expression for a0 turns out 
to be 

ao = - S ,  (x~ + x 2) (x~ + x32) (76) 

and the corresponding invariant has the form 

2 2 2 - 2  
I "~- - - S  1 [ ( x  1 -1- x 2 ) ( x  3 q- x 3 ) -~-/(x321~ 1 - X l X 3 )  2 '~  1(x23~ 3 - x 3 x 2 )  2]  

- $3[1(x22, - x1~2) 2] (77) 

4. CONCLUSIONS 

In conclusion, a few remarks seem appropriate. The method outlined 
in the present investigation furnishes a general structure for the potential 
equations in three dimensions. The solutions of these equations are capable 
of providing integrable systems admitting second-order invariants. A set of 
four systems is examined in the context of our framework which admit 
second-order invariants. One of these systems, described by the potential 
of example 2, seems to be an interesting case particularly because it 
represents a generalization of the well-known Fokas potential to three 
dimensions. 
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